
Framework Wordpress Drupal ASP.NET Laravel Django Meteor Ruby On Rails Spring

Framework Aid CMS CMS Template Template Tutorial Tutorial Library Library

Password Encryption MD5 SHA512 PBKDF2 Bcrypt PBKDF2 Bcrypt Bcrypt Bcrypt

Password Reset On by default On by default Off by default Code examples Code examples Code examples None None

Credential Error Msg Leaks by default Hidden by
default

Hidden by
default

Hidden by
default

Hidden in code
examples

Leaks in by default Hidden in
description

None

Bruteforce protection Described On by default Off by default On by default Code examples None Described Described

Login failure logging None On by default Off by default None Code examples None Described None

CSRF Token URL Nounce On by default On by default On by default Code examples Uses Localstorage,
not cookies

Code examples Code examples

Percent of Sites (10K) 28 6 26 0.8 1.5 0.03 7.1 0.03

Insecure by Default?
Authentication Services in Popular Web Frameworks

Hannah Li and David Evans, University of Virginia

Motivation

According to BuiltWith.com, 70% of Quantcast’s top 10K
websites are built using one of the 8 most popular frameworks.
Hence, we hypothesize that the aid provided by these
frameworks has a major impact on the security of many
websites. This work studies how different design choices made
by web frameworks impact the security of web applications
built by typical developers using those frameworks.

Scope

We focus on server-side frameworks or content management
systems that provide default authentication services to help
developers get started. Each of the three levels of aid –
template, tutorial, libraries– from the framework expect
increasing knowledge and expertise from the developer. For
now, we do not consider third-party tutorials or modules which
may be helpful additions to many of these frameworks.

Objectives and Preliminary Findings

Security/Usability Tradeoffs.

Frameworks also make decisions that may not be perceived as
insecure, such as the choice of login error message and whether
to include brute-force protection and login failure logging. For
example, the template and code example respectively for
Wordpress and Meteor give “Incorrect username/password”
and ”inactive account” errors.

While such specific error messages help the developer and user
distinguish between non-existent user accounts and invalid
passwords, accepted security practices encourage hiding this
information for potential attackers.

Other examples include brute-force protection and login failure
logging, which are not widely adopted in the examined
frameworks, although they have significant security benefits
with minimal downsides. On the other hand, CRSF protections
appear to be provided by all frameworks when applicable.

Server
Browser

(Localhost)

1. Server sends cookie with
Secure flag

2. Cookie is not sent over
unencrypted connection

Insecure Connection

On by Default: On by default and off by default describe features provided by frameworks that are ready-to-use out of the box.
Off by Default: The features that are off by default are turned off in the default version unless the developer manually turns them on.
Code examples: Code examples signifies that a framework provides snippets of code for the developer to reference, but it’s ultimately up to the developer to correctly implement the feature.
Described: Frameworks remind the developer of security features by describing them in prose.
None: Even the frameworks with features labeled none offers at least a low-level authentication module for the developer.

Security vs. Ease of Development.
While most frameworks turn the HTTP-Only cookie flag on by
default, the Secure flag has to be set manually. This is undesirable
for security, but convenient from a development perspective
because most websites are developed and tested using localhost.
With the Secure flag turned on, cookies would not work because
localhost does not have encrypted connection.Wordpress

Drupal

ASP.NET

Ruby On Rails

Drupal

WordpressContent Management Systems

Meteor

DjangoFrameworks

Languages

Laravel

ASP.NET

Spring

Ruby On Rails

Least AidPython

JavaScript

Most Aid

Long Term Goals.
We seek to understand the usability and performance trade-
offs that lead frameworks to adopt insecure defaults, and
develop alternatives that lead to better security without
sacrificing the needs of easy initial development and
deployment. We seek to identify factors that make a
framework less secure than is possible following best known
practices, and to understand why framework designers choose
less security options.

