
Decentralized Certificate Authorities (Poster Proposal)

Hannah Li, Bargav Jayaraman, David Evans
University of Virginia

https://oblivc.org/dca

The security of TLS depends on trust in certificate au-
thorities, and that trust stems from their ability to protect
and control the use of a private signing key. The com-
promise of a CA private key represents a single point-of-
failure that could have disastrous consequences, so CAs
go to great lengths to attempt to protect and control the
use of their private keys. Nevertheless, keys are some-
times exposed and may be misused accidentally or inten-
tionally by insiders.

We propose a new model where a CA’s private key
is split among multiple parties, and signatures are pro-
duced using a secure multi-party computation protocol
that never exposes the actual signing key. Decentralized
CA can be used in three different settings: jointly com-
puting the signature and public key by (1) a single CA
that wants to protect its own signing keys by distributing
them among its own hosts, (2) two independent CAs who
want to jointly mitigate the risks of key exposure or mis-
use, and (3) a CA and subject who wants to protect itself
from a CA generating rogue certificates by being directly
involved in the certificate signing process. We have build
a prototype implementation to demonstrate the practical-
ity of this concept using secure two-party computation
to generate certificates signed using ECDSA on curve
secp192k1.

Distributed Key Generation. To generate a joint pub-
lic key for signature verification, the two hosts operating
as a joint CA independently generate random private key
shares skA and skB which are combined in a multi-party
computation to obtain master private key sk. This private
key is never revealed outside the MPC. The correspond-
ing public key is obtained via curve point multiplication
as pk = sk × G within the MPC, and revealed to both
hosts who publish it as a joint public key.

Distributed Certificate Signing. Each host generates a
hash of the to-be-signed certificate, and inputs that value
along with its private key share and one-time signing key
share into an MPC protocol (Figure 1). An equality test
(zA == zB), is performed inside the MPC to ensure both
the CAs agree upon the certificate to be signed. The key
shares are combined in the MPC, and used for a stan-
dard ECDSA algorithm to generate the signature which
is revealed at the end of the protocol.

Figure 1: Distributed Certificate Signing

Implementation. We use the Obliv-C framework that
includes the latest enhancements to Yao’s garbled cir-
cuits protocol. Apart from the Yao’s protocol for garbled
circuits that is secure against semi-honest adversaries,
Obliv-C also implements the dual execution protocol to
provide security against active adversaries.

Cost. The most expensive step in ECDSA (for both key
generation and signing) is the curve point multiplication
protocol, which accounts for 19.2 billion of the 22 billion
total garbled gates needed to execute the signing proto-
col. The cost is dominated by the bandwidth required to
send the signing circuit, which requires 410 GiB to trans-
mit using 80-bit wire labels and the half-gates method.

We have conducted experiments using Amazon AWS
EC2 nodes to jointly sign a certificate with different sce-
narios to model two hosts in the same data center (per-
haps reasonable for a CA protecting its own signing key),
two hosts in different regions, and hosts using different
cloud providers. Using the semi-honest Yao’s protocol
for multi-party computation, the signing costs around 30
cents per certificate when bandwidth is free (both hosts
in the same data center), up to around $40 per certificate
for external market-rate bandwidth. These costs approx-
imately double for signing with dual execution protocol,
but still well within what we believe is practical for high-
value certificates.

