
MPC

MPC

MPC

Decentralized Certificate Authorities
Hannah Li+, Bargav Jayaraman+ and David Evans

University of Virginia
oblivc.org/dca

Overview

The security of TLS depends on trust in certificate authorities, and that
trust stems from their ability to protect and control the use of a private
signing key. The compromise of a CA private key represents a single
point-of-failure that could have disastrous consequences, so CAs go to
great lengths to attempt to protect and control the use of their private
keys. Nevertheless, keys are sometimes exposed and misused
accidentally or intentionally by insiders.

We demonstrate multi-party key signing with MPC.

Application Scenarios Related WorksExperimental Results

Implementation

We use the Obliv-C framework that includes the latest enhancements to Yao's garbled circuits protocol.

Apart from the Yao's protocol for garbled circuits that is secure against semi-honest adversaries, Obliv-C

also implements the dual execution protocol to provide security against active adversaries.

Ruby On Rails

example.com

1. A single CA wants to protect its signing key

2. Two independent CAs jointly sign certificates

3. Subject is also involved in its certificate signing

We have conducted experiments using Amazon

AWS EC2 nodes to jointly sign a certificate using

ECDSA on curve secp192k1 using Yao’s protocol

and dual execution.

Store the key shares in

different machines, and

combine them in MPC.

Threshold cryptography based distributed

certificate signing scheme has been proposed for

bitcoins [1] which is resistant to collusion or node

failures and takes around 13 s for a signing. More

importantly, a two-party ECDSA signing scheme

[2] has been proposed recently that takes 37 ms

for signing using a 256 bit curve.

Though these schemes are efficient, they lack the

flexibility of complex multi-party assertions during

the certificate signing process. Our scheme

achieves this flexibility using the MPC.

[1] Rosario Gennaro, Steven Goldfeder and Arvind

Narayanan, Threshold-optimal DSA/ECDSA signatures

and an application to Bitcoin wallet security, ACNS

2016

[2] Yehuda Lindell, Fast Secure Two-Party ECDSA

Signing, 2017

CA0 CA0’

CA0
CA1

CAs

Local
(No network cost)

Long
Distance*

Compute Cost $0.28 $0.35

Total Cost
($/Signing)

$0.28 $8.54

*Cost increases with distance because of increased

network latency and data transfer costs (400 GiB of

data), but allowed more parallelization of

simultaneous scans.

Dual execution costs approximately twice as much.

ECDSA Signature
Algorithm

Certificate Signing Request

Certificate
MPC

example.com

CA Organization

CAA CAB

